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ABSTRACT
7 Baged upon the existence and uniqueness of a solution to the linearized
Lundquist equations established previously, the modified energy principle for

iklé » 1
the g-stability of a confined toroidal plasma is rigorously justified. A
Sr9htR
variational principle is developed to find the infimum k\f /1 and an esti-
mate for the maximum growth rate is obtained. The results are also extended

to a diffuse pinch and a multiple tori plasma.
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SIGNIFICANCE AND EXPLANATION

In this report, we shall justify rigorously the so-called modified energy
principle for the O-stability of a confined toroidal plasma. Intuitively
speaking, a plasma is called O-stable if it does not grow faster than

exp(0t), where ¢ = 1/T and T is some characteristic time needed for
fusion. The modified energy principle claims that the plasma is O-stable if
some energy functional is nonnegative and unstable if otherwise. We develop a
method to get an upper bound for ¢ and the maximum growth rate for the
plasma is also obtained. Furthermore the results are extended to the case
that the plasma fills up the whole conducting shell and that there are several

plasma tori in the conducting shell.
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STABILITY THEORY OF A CONFINED TOROIDAL PLASMA
PART 1I. MODIFIED ENERGY PRINCIPLE AND GROWTH RATE

Peter Laurence‘ and M. C. Shen'
§1. Introduction.

The MHD stability of a plasma equilibrium confined in a magnetic field is
one of the most important topics in controlled thermonuclear research. The
approach to this problem is very often based upon the linear energy principle
formulated by Berstein et. al. (1957). 1In the justification of the necessary
condition for stability, they assumed that the eigenfunctions of a certain
linear operator form a complete orthonormal basis. This assumption may limit
the scope of the linear energy principle in applications. Laval et. al. (1965)
relaxed this restriction and established a modified energy principle for the
so-called O-stability of a confined plasma, including the linear energy
principle as a special case. However, in their derivation the existence of a
classical solution to the corresponding system of the linearized Lundquist
equations is tacitly assumed, and at present no such a solution is known to
exist. In this report we shall state and prove rigorously a precise version
of the modified energy principle, for a confined toroidal plasma, which is the
main contribution of our work. Our approach relies upon the existence of a
generalized solution to the linearized Lundquist equations we established in a

previous report, which we shall refer to as Part I.
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The contents of this report are briefly explained as follows. 1In Section

2, we present the rigorous proof of a precise version of the modified energy
principle for o-stability. A necessary and sufficient condition is given for
an equilibrium to be 0o-gstable. The proof of the sufficiency essentially fol-
lows the results obtained in Part I; that of the necessity needs some regular-
ity and embedding theorems by Lions and Magenes (1972). 1In Section 3, a vari-
ational principle is developed to find the infimum of ¢ for o-stability,

In Section 4, an estimate of the maximum growth rate is obtained. FPinally, we
extend previous results to the cases of a diffusion pinch and a multiple tori

configuration in Section 5.
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§2. Necessity and Sufficiency of the Modified Energy Principle.

We begin with the definition of 0O-gstability of a plasma equilibrium.
Definition An equilibrium is called o-stable if all solutions (§(t),A(t))
of the evolutionary variational problem EVP (46, Part I) have the property
that there exist some constant ¢ > 0 and ¢ such that

lilg'v < c exp 20t on (0,%).
We now prove
An equilibrium subject to the conditions of §3, Part I is o-stable if
and only if
al(E,A),(E,A) + %1612 >0, W) e (2.1)
Proof:
To prove the sufficiency, assume that A(t) = (£(t),A(t)) is a solution

to the EVP with (£(0),A(0)) = AO' %%(0) = éo and prescribed flux

[ A °*nds =0(t) (46, Part 1), As in §6, Part I, we agsociate with the
Ty
EVP an auxiliary EVP (AEVP) for which we construct the nth Galerkin

approximation and obtain (6.16), Part I as follows:

102 s acg®,a™, E™AM) = ™o, + aA™0),A0)).
P 2,p

Adding azlﬁnli o to both sides and using (2.1) we get
’
2 m 2 m 2 2, R 2
1@ (e <1 ' ' 1 : .
" v) 2.0 £"0) 2.0 * &I O0% 4 Pt en] (2.2)
where c, was defined after (6.16), Part I, from which we derive as in
passing from (6.20) to (1.22), Part I
n n
%2202 < (1E®(0)12  + Rge?ot _ B, (2.3)
2,p 2,0 42 o2

where

m m 2 m 2
™ = 1t (o3 o+ c oy .
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We let

2

w ’

and would like to pass to the limit in (2.3). Since the egquilibrium satisfies

2 2
b = 'E(o)lz,p + c1lA(0)l

the assumptions in §3, Part I, and by the coerciveness of a(*,*), there
exist A, 6§ > 0, (where A > 02) such that

aCEA),(E,A)) + AIELS > 81 (g
Thus proceeding as in §6, Part I for the existence proof and using the remark
in §7, part 1, we have

%) > &) n pilo,m s L@,

e » b aa Priom s . (2.4)

Also given the construction of our Galerkin approximations, we have

£®(0) * £(0)  in “i‘“p"
E®0) » £(0)  4n :.ﬁmp), < (2.5)

A®(0) * A(0) in W.

For 1,8 € [0,T], T > 8, we now integrate both sides of (2.3) from s to
7 and multiply both sides by 1/(t - s8), to obtain

m
- ftlﬁm(t)lg'pdt L A (1 UL 21e?%tae - L

m

T
T-8 2,p -8 [ % ae.
8 ]

We now can pass to the limit on the R.H.S. becuase of (2.4) and on the

L.H.S. we uge ful € lim 1ntlunl, valid for any weakly convergent sequence in

a Banach space, to obtain

1

b, 20t
T + e

T 2 AT 2 A b
{ (e | de < ,_.{ CLIT3] b at r-.{ T dt. (2.6)

Noting that lE(t)l2 o e L2[0,T] L‘[O,T], we now let T + 8 on the

’
L.H.8., apply the Lebasque differentiation theorem [Rudin, 1974) there, which
states that the derivative of the integral of an L! function is the L'

function, and by explicit integration and differentiation on the R.H.S., we




obtain

4}
b}2t

2 2 b
KE(EN; < (BN | + 3l -3, (2.7)

2 b
< (IE(O)Iz'p + iﬁe .

In addition, if we insert (2.7) into (2.2), we have

m m
em 2 sm 2 m 2 2 b 20t b
13 (t)'z,p < 1§ (O)IZ,D + c,lA (O)lw + X{(IE(O)Iz'D +~x*)e X }

m
m 2 b 20t m
-b + A(IE(O)Iz'p b Ye -b .

Upon going through the same procedure as between (2.5) and (2.6), we may pass
to the limit and obtain

b, 20t _

2 2 2
lE(t)lz'D S b+ AIEOIL, o+ Y)e b

- A(lz(on"z’ . +§-)e2°‘. (2.8)

This establishes the sufficiency of (2.1).
Next we prove the necessity of the modified energy principle for
g-gtability. We geek to show here that
a((,A),(E,A)) + oBERZ < 0
2,p
w w
for an element (£,A) @ W, implies the existence of a solution of the EVP,
(£(t),A(t)), such that
2
180 b ot.
3 2,0 C exp 20t
In the proof of this result the essential part is played by certain regu-
larity and embedding theorems of Lions and Magenes (1972), which are then
coupled with the original proof of Laval et. al. (1965) to yield the results.
We begin by slightly changing our point of view and noting that I(C.A)lw

defines a norm on l"z (W) which we will denote by IEI" « This is clear
£ ,

P
since, given £ @ ﬂp, the boundary value problem




VxVxpa=o, Vea=o,

nxA==(n*EB" on T R

)
nxAaA=20 on r .,
v
/] Aenas=o, (2.9)
r
v

determines A uniquely, and the dependence on § of A is linear.

*
Let wE Be the dual space of wg. We seek to show that the following

formula holds.

a2 32
< —5 &), E(e)> = = <&(e),E(e)>, o~ (2.10)
at WoW it ’
£ ¢
] 9
2 3% E(t), % E(t)>2'p ’ 2
where <°*,*> denotes the action of the linear functional 2—— E(t) e w'
* 2 13
WEXWE t

on £(t) e Weo and where (E(t),A(t)) is a solution to the AEVP. We shall

also show that %: <€(t),E(e) is absolutely continuous on (0,T]. Now

2,p
a((E,A),(E,;)) defines a bilinear form on WE' which we shall denote by

aE(E,E).
In order to prove (2.9), note that since (&(t),A(t)) is a solution of
AEVP
32 ~ ~ ~
§ — E(t),g(t)) * + a (E'E) = 0, VE ew . (201‘)
3 2 g 3
t ngWE

We now invoke a theorem of Lions and Magenes (1972). The solution of
(2.11) has the property

E(t) e c°([o.'r1 s "5)'
)
3% e ccto,m 1 xp)
where HE denotes the closure in Lz(np) of wg, previously denoted by
Pn (BE)' Furthermore, there exist Ee(t) e c‘([O,T] s wg), such that
P

?
e clito,m W) and




. ]

ES(t) » E(v) in c%(to,m : We), (2.12)
a © 3 0

e (t) "‘a‘g (t) in ¢ ((o0o,T] : He) R ) (2.13)
2,€ 2

—3--5-2- (t) *+ -a—-g-(t) in L2(IO,T1 : w;) . (2.14)
it at

We shall first assume that formula (2.10) holds for Ee and show that it

holds for &. Integrating (2.10) from 0 to T, t € [0,T] we have

-32

T € € ) € € t=T
{) 2< 3 £ (t),E (tbw'xw =g <E (el &>, 1,
€€
-2 [ B, LBy, ae (2.15)
° kS i I3 2,p0 " *

Now using (2.13) we may pass to the limit on the integral on the L.H.S. of
(2.14), and using (2.11) and (2.12) we may pass to the limit in the terms of

the R.H.S. Thus we obtain
T 32
[7 2¢ = E(e),e(e)>
0 at ngwa

t=T

9
=3¢ <E(t).€(t)>2'p =0

-2 {: < ':‘E E(t), -g-é E(e)>, qdt.

Again since all integrands, because of (2.12$ to (2.14), are in L2[0,Tl
thus in L'(0,T], Lebesgue's differentiation theorem allows us to differentiate
the integrals on both sides of (2.16) with tesééct to T and recover the
integrands, thus it follows that (2.10) holds and that %E-<E(t),€(t)>2 is

P
an absolutely continuous function on [0,T) being equal to the integral of

1 function.

an L
We now return to show that (2.10) holds with Ee(t) replacing §(t).

For this purpose we use an embedding theorem of Lions and Magenes (1972) which

reduces to the following special form needed later,




A e o e e L

If n(t) has the properties:

1) n(e) @ L3(10,T) : We),

2) M o 20,7 ¢ W) (2.18)
at H E ’ .
2

3) -")—g e LZ(IO.T] : w;).
At

then n(t) € A ¢([0,T] : WE)'

%%e AC([0,T] : Ha). (2.19)
Moreover, if we let
2 ] 2
x = {ulu € L7(10,7) : W;), a—‘t':-c L0, T : W),
2%y *
—3 GL([OT] :wg) ’
It
with norm
tut, = {lul22 + 1-3%22
L°(1o,T): "6) L“((o,T} : "E)
2 1
+ IE—EI ) }/2
at® L(lo, T]:WE)
then

C;(IO,T] : WE) is dense in X.
Thus in particular C.(IO,T] : wg) is dense in X.
Given that Ee(t) satisfies the above conditions (cf. (2.12) to (2.14)),

we may take (Ee)n(t) e (C.(IO.T) : wg) > €e(t) in X. Now starting with the

relation
2,,€
t A°(E )n e t=T
2¢ ———=(t), (§7) (e)> , at --—<(E ) (8 (%) alt>,
0 2t n 2,p|t=0

We* W

t
-z! <T‘“'T‘5’nzp
for t e [0,T], and using (2.17), we may pass to the limit in the above

equation with the result




2,€
T 3°¢g € =3 £° € =t
{’ 2¢ .;? (), & (t»w'xw =37 <& (t),E,(t)>2'p £=0
£7¢

T 9 € 9 €
- 2{)<a—t£ (t), 37 & (t)>2,pdt
for t € [0,T]. So we obtain (2,15) as desired. This concludes the proof
that (2,10) holds with Ee(t) replacing §&(t). We now invoke another lemma

of Lions and Magenes (1972) which establishes that the energy equality

3¢ 2 4
'ﬁ'ﬂ + a(E'E) = C (2-20)

(3
holds for solutions (&,A)(t) to AEVP.

The proof now proceeds almost identically to that of Laval et. al.
{(1965). For completeness sake we present it here.

If £(t) is a solution of the AEVP defined by (2.11), then
2

<z Er),E(t)> , ¢+ ag(E,E) =0 (2.21)
t WeXWe

holds because £(t) € wﬁ'

If we make use of (2.9) and substitute for a(E,E) from (2.19) into

(2.21), we obtain the virial equation
2

4I§—i(t)|§ -4l - (2.22)
£ d%t g
We specify the initijal data for AEVP to be
- 35 L 4
fleso =% Fefemo T (2.23)

Note that, with this choice of initial data, C 1in (2.22) is negative, so we

obtain
2
| 2 9 2
c (] (] .
dtz 1E(t) 2,0 > 4 32‘2,9 on [o,T]
Thus the same argument as from (6.20) to (6.21), Part I, shows that
d2 2 d 2
' ' I g | .
£(t) 2,0 SZEJE(t) 2,0 > {dt E(t) 2,0} on {O,T] (2.24)

Note also that, since according to (2.19) £&(t) € AC({O,T] : HE)' and

since 1E(0)0 = N&1 # O, if we choose T' < T small enough. 70 > 0 such

that

1E(e) >0 for t e [0,T'). (2.25)
2,p




Thus in particular if we define

|E(t/l§ p
y(t) = log --2----'“ ’

1E0
2,p
y(t) is absolutely continuous, since the logarithm is a Lipshitz function for

any possitive interval bounded away from zero, and since the composition of a
Lipshitz function with an absolutely continuous function is absolutely contin-~
uous (Stampachia, 1966).

Similarly,
- - Lagen? pgen
is, because of (2.19), the quotient of an absolutely continuous function and

an absolutely continuous function which is bounded away from zero, and hence

(Rudin, 1974) is absolutely continuous.

Now (2.24) becomes

ay >0 on [O,T'),
i dtz
with the initial conditions y = 0, 3Y = 20. Thus, since y(t) and

dat
%%-9 Ac{0,T'], we may integrate this inequality and obtain

g% > 20, and y(t) > 20t for t @ [0,T'), (2.25)
therefore,
|£(t)l§ > 1E(0)8%  exp 20t for t @ [0,T']. (2.26)
' 2,p

We now note that the condition (2.25) is clearly satisfied for all t > 0
by repeating the same argument, we obtain
2 2
] | | .
1§(t) 2,0 > £(0) 2,p °XP 20t

This concludes our proof of Theorem 2.1,
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§3. Vvariational Principle

Earlier we established that a((§,A),(§,A)) is coercive with respect to

the W normon W X W. There exist 3IA > 0 and 6 > 0 not necessarily

unigue such that
al(E,A),(6,A)) + AIEI2 > 81(E,a02,  w(E,A) ew.
Y W
In particular, A may be chosen so that
a((€,n),(E,A)) + Alﬁlg'p >0

V(E,A) € W,

(3.1)

(3.2)

We now show how to find the minimal A, AO' that ensures (3.2) by a

variational procedure.
We wish to find

inf a((§,A),(E,A)).

2 -
|£|2'9_1
(E,A)eM

(3.3)

As seen from (2.1), this infimum is finite. We now show that, although in

general there is no element (§,A) € W which realizes the infimum, we can

construct a sequence of vectors (En'An) € W such that
n.n_ .n_n
a((g ,A '(E ,A )) = xn hd Ao .
We use again the skew orthonormal basis

i i i i g3
B (81032)1 < 81081 )2'9 oij'

and define A" = (En,An) to be an element of W of the form
n n_n ° i .1
A" = (E,A7) = 121 ain(81'82)'

with u;“l2 p = 1+ for which the infimum of (3.3) is attained.
’

(3.4)

That this

infimum is indeed reaalized by an element of W of the form (3.4) follows by

noting that




’
{=1 in 1
n,2 2

M =) @l
so that the uin vary over a compa«t set of dimension n. Since
a((€™,a"), (£",A") is a continuous function of L it attains both its
maximum and minimum and the minimum satisfies

ata”8h) = a"g"8h), 1 <1<, (3.5)

A"« a(aA™,AM). (3.6)

The equation (3.5) holds because ¥r > 0, ¥L of the form (3.4),
T = (21,22) such that

a(A®™ + LA™ 4 rI) > AP o rz1,g“ LRI
’

“n ;n 2 “n n_sn n n_2
a(A",A") + r"a(L,l) + 2ra(A",Z) > A <E,E >0 * A'r ":1':2’2,9

n ~
+ 2\ rd:‘ pE)z'p-

Using
a(A™,A") = AT, e = A",
to cancel one term from both sides and then dividing by r and letting
r + 0, we have
n n_.n
a(h",Z) < A7<E ,5‘>2,p.
Therefore
n n_.n
a(A™,L) » A<k .t1>2'p
follows from replacing I by ~I in the above derivation. Now A" is an
increasing sequence of real numbers since the infimum is taken over an
increasing sequence of sets. Moreover, by the coerciveness there exist A
such that
“n n n
a(A A7) + AL lz,p >0,

that is,

-12-
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A > "Ao
n
Hence the sequence of [An} is bounded below and there exists AO such that
n
AT Ao,

. 2
where AO may be negative. Moreover, by the coerciveness again, §,0° >0
such that 02 > -AO,

2 2
a((g,A),(E,A)) + 0" > GI(E.A)Iw ¢ (3.5)
where lElg , = 1+ It follows that
’

n cn *n
A" = (€ /A )p
forms a bounded sequence in W, since

2

a((g™,a™, €"a") + 2 > A + ? > @AM, .

. . an .
Hence there exists a weakly convergent subsequence in W of the A, and in

particular, of the En in Ls(ﬂp). Unfortunately, without some additional

features of W ensuring compactness of the embedding of W in Lz(ﬂp) x

Lz(nv), we may not conclude that the limit A is a genuine eigenfunction.

We will not examine this question further here. In any case we have shown

where A" is the solution to the nth minimization problem discussed
above. Finally we have

Theorem 3.1.

— o = a0

inf  a((§,A),(E,A)) = Xo .
2
l&lz’p=1

(E,A)ew
Proof:

inf a((E,A):(E,A)) < AO ’

2
1€} =1
s 2,p
(E,A)ew
is clear since (Ennhn) is a collection of elements of W with
°n
1€ = 1,
2 2,0 1

M e ad ——— 4 Bl . « . - C e e e A m3m ma sl




ing ((E,A),(E,A)) > AO '
2
IEI2'9-1

(E,n)ew
is shown by contradiction. '
¢4
3 int ‘((Ell),(g,l)) < lo - € N
& 2,2 _,
[ ¥ | -
£ 2,0
(E,A)ew
then there exists N > 0 such that for n > N
£
2 [ ]
But this contradicts the defining property of A" and the monotonicity of the

a(A™,A™) < Ay -

sequence A",
A consequence of (2.7) is the following:

Corollary:

8((;0‘):(&;5)) - A0<£'£>2'D >0

V(E,A) e W,
Proof:
Since
inf a((E.A),(ﬁpl)) = A0 ’
) m
i 2,0
(E,A)ew

a((§,A),(E,A)) ~ AO » 0.

2
V¥(§,A) 8 W with '5'2,9 = 1,

Now for arbitrary (£,A) @ W, consider

(&2 - (f;,a)/lal"z”p ,

where IEI 2 « Then
Lptﬂp) = 1

al(Z.R),(§,8)) - Ay > 0.
However, due to the bilinearity of a(+,°*)

a((E.i).(E.i)) - a((E.A).(E.A))/|€l§ p-

We obtain (2.9) by multiplying (2.10) by l{l2 0
’

- '%‘ y w.&j‘,w Te
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§4. Estimate of the Maximum Growth Rate.

In deriving the sufficiency of the modified energy principle in Theorem

2.1, we established that if 302 such that

al(E,A), (E,A)) + 0%1G05 S >0, w(EA) @ W,
7 then any solution (§(t),A(t)) of the EVP on ([0,®) is subject to the
growth estimate
s 2
'ElZ.D

In the process of proving the coerciveness of the bilinear form

< cexp 20t on [0,%). (4.1)

’ a((E,A)(E,A)) (§5, Part I), that is, dA,8 > 0 such that

i aCE,A), (E,A)) + XIELS > SLEANIZ,  W(EA) @ W
P i we found that upper bounds on A could be given in terms of the constants
' e which characterize the equilibrium quantities p, B, V x B, However, in
| §5, Part I, § on the R.H. S. of equation (5.16) was taken to be Y,. We now
’ make note of what estimate is obtained for A when § = 0, since this is all
that is needed in order to obtain the growth estimate (4.1).

Thus we let £, and fz in (5.15), Part I be such that

 §
o,f1 = 1 33e4f2 = 1
then eze e e2e
A= 12 + 2°3°4
4 4

is an upper bound for the maximum growth rate; or we make ugse of the more

precise estimate following from (5.13) and (5.14) in PartI,
A= 2V x BxneBe Vq!
] % - !
L
is, again, an upper bound on the maximum growth rate,

-15=




§5. Diffuse Pinch and Multi-Tori Configuration.

In this section we extend the results of §3, Part I to two other
configurations of importance in thermonuclear research, One case deals with a
diffuse pinch and the other, a multiple tori plasma confined in a toroidal
shell.

In a diffuse pinch (Figure 1) the plasma extends to the confining
shell. The equations in the plasma region are the same as in §3, Part I; now
we only need to express them in Eulerian coordinates

nE-V(YpV-E+E-VP)+VxBxVx(€xB)) (5.1)
+9x9x (E xB) xB,

We impose the boundary condition on the confining shell that the normal
component of velocity on the shell is zero. By integration

E*en=0 on T, (5.2)
and we note that if (5.2) is satisfied then the perturbed magnetic field
B' = ¥ x (E x B)
automatically satisfies the boundary condition:
B1 *n=0 on T,
because
Een=0=>nx(§ xB) =0 on T,
whefe B°*n=0 by our assumption on the equilibrium state, and
nXy=Q0Qms)>ne V¥Vxy=0 on T,
as can be easily seen by applying Stoke's theorem to infinitesimal loops on
the boundary.
We now present, in a somewhat condensed fashion, an existence and
uniqueness proof for a weak solution to the boundary value problem (5.1) to
(5.2) with initial conditions

£(0) = Eo ' %%(0) = Eo‘ (5.3)
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We shall make the following assumptions on the equilibrium quantities:

-
p. VpeL,

B*ns=20 on r.

Furthermore, we also assume 301,c2,d1,d2 > 0 such that

c, ¢ p(x) € ¢

1 2’

d, < p(x) < dz'
If we take the inner product of (S.1) with E vwhere E satisfies the

boundary condition £ * n=0 on [, we get

@E,E>, =] (Ve g9 T +Tx(Exm) - Vx ExB)
Ip a
P

~EeVxBx (VX (ExB)) + (Ve §)E - TR)AV

1 [ (¢ n)YPVE - B« (Vx E xB) - £ * VPlAS

rP

-] YRV e BNV e E) +Vx (ExB) e Vx (FxB)
rP

~EeVxBx (Vx (ExB)) + (Ve E)E » VRav,

Thus we define

a((€,8) = YRV e E)(V o ) + VY x (ExB) « ¥ x (ExB)

“P
- VxBx (Vx(ExB)) + (Ve ENE * Vplav, (5.4)
and obtain
<o§.§>2'9 +a(,§) =0 W such that £ *n=0 on T,
Let

v = (€ @ u (@] n) =0},
with scalar product

B> _ =] (Ve Env B (5.5)
v ﬂp

+9x (ExB)+ ¥x (£ xB) +pE e+ dav,

v A e
- AR 12

e




and let

V = closure of V in | e
v
All the properties related to volume integrals enjoyed by the first

components of elements of W (cf. §4, Part I) also hold for elements of V
and the proofs are the same, that is

v-£%fe Lz(m,

v x (€ x B) 8 L2,

£ e Li@).

We now make use of a result in Temam (1973), noting that given (5.5),

Zc > 0 such that,
e, > g -

so that if E™ is a Cauchy sequence in V-, with
E® + & in v,

then
ne€&" +neg in H-Vz(l‘).

Therefore, since n * E® = 0 in H'h@(r) (in fact in n”ﬁ(r))).

nef=0 in n"’z(r).

All other aspects of the existence and uniqueness proofs are straight-
forward simplifications of those in §6, Part I, so we will not repeat them
here but only state the following
Theorem S.1:

There exist a unique solution &(t) of the EVP
2

3 -
(1) ‘a“z—t‘ <£(t)p£>2'p + a(E.E) - 0 VE G V,
3E 2
(2) o) =k e v, 30 =E etia,

and
£(r) @ ({0, : V),

(13

e ccro,=) : 2.

s -l T ¢ SN

B A ¢ g £ R ity




One can easily verify that for the diffuse pinch the estimate

C
s 2 1 2 2 2, 20t
<
lE(t)lz'p (1 + ——-lE(O)lz'p + IE(Q)I e,

52
holds, where

02 can be estimated from (5.13), Part I, .
2 xBxpeBeV
az'l n= 0]
P L.
If the plasma region, instead of consisting of one torus, is the union

of N non-intersecting tori with interior npi, all enclosed in an outer

toroidal conducting shell (Figure 2) Pv, the basic approach of Part I again

————

applies.

In each connected plasma domain Qpi we search for Ei(t) such that

o, E(e) = p(el) = veypy o & + gt o wph (5.6)

+ ¥ x Bi x ¥V x (51 x ni) +Vx9x (£1 x Bi) x 31.

In the vacuum region we gain require .

Vx9¥Yxaa=0,

VKA=0.

In each plasma-vacuum interface rp the continuity of the total
i

pressure requires that
i i i
_ yolyg o gt S i P
Vg 480 (" e 4V x (€ xBP (5.9)

=8+ (Vxa+Et e Y), on r, .

p

Furthermore,
nXA=0 on Pv . (5.10)
We also have the prescribed flux

/] A nads = é(e), (5.11)

r
v

and initial conditions

3¢
£(0) = €, z2t0) = &,
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Figure 2
A Cross Section of the Multiple Tori Plasma
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Proceeding in the same way as in Part I, we define a space
- 1 N=-1 N 1 = 1
W= {(E e, B0 'K )|e1 en(ap), AEV(R) H (@)}

nxA=0 on r ., P
v

nx A= (-n-° Ei)Bv on r i’

with 1(§,A)! _ defined by
W

€%, 000 g% _=f [Fxalfave] [ el e gh)?
W Qv i npi
+ |V x (g% x 81)|? + otllav,

and let

W = closure of W in 1 I _
w

wt=wae (0,a'), A @ 53 .

We note that in order to determine a unigque solution to the elliptic system:

VxVxas=o0,

Vears=soO,
n=-=1 3
nxXA=0, on (U T Jur , %
i=1 Pj

it is now necessary to prescribe [Blank, Grad, Fredrichs, 1957] N - 1 fluxes

f A*nds =6 (¢t),
r 1
Py
onany N - 1 of the N plasma surfaces say PP ,°°°,Pp » in addition to
1 N-1
(5.11).
With conditions on the equilibrium quantities identical to those of §3,
Part I, and the same procedures as in §3 to §6, Part I, we may again establish

the existence and uniqueness of solutions to the following AEVP associated

with (5.6)-(5.11)3 ‘

B

o i N -




2
N > =N
(1) — <€1p M 3 )1(510 4 )>2,D

9

at?

+al((€,oee,&M),8), (8,00, 8%,0)) = 0 (5.12)
V(& 000, ,0) @ w.
(2) (€'00),0++,%0),A(0)) = (E],e00, €N

o'
(35140) oo 35540)) = (8,000, e (5.13)
at ’ 'at = ’ , 0 . L4

- A') C-
Ao Ao) C-w

where H = {closure in L2 of Pﬂp(")}' and Aa is a solution of (6.13),

corresponding to fluxes &(0) and 5j(0).

(3) /] A°*nds=0, | A°+nas=o. (5.14)

r r
v Py
Theorem 5.2:

There exists a unique solution of the AEVP (5.12-5.14) such that
1 N N
(§ (t),***, 8 (t),A(t)) e w,

1 N
] ) 0
(‘a‘i“(t)'.."‘a‘g“(t)) ecC ([00.) : H)o

To the solution of AEVP we add a solution of the elliptic system

VxVxa'=o0,

nxaA'=0 on YTIp UT ,
i i v
J A"+ nas =6(t), /| A' e+ nds =6j(t),
Pv r
where A' € V3.
As before this solution has the property that
2
)
(1) L g N ), (8 eee 8N
atz 2,p

+al(€),e0e, €% (e),ace)(EY, 000, E8(t),a(t)) = 0

v(€', 00, BN, A(0)) e ',




ieN 3 s
a((E l...la 'A) (E l...le 'A)) bod z a((E ):(E A7)
i=1

1 LA R4 N = 1 [ XX ] N
(2) ((E (0), IE (0)),a(0)) ((E o’ IE )UAO) e "+

ae 0)'000'25L40)) = (E ,"‘,E ) € H. ‘

(3) f A°* nds =0(t); f A *nads = aj(t).

Pv PPij

If o(t) is continuous, then

(€ (e), o0, %)) ,A(L)) € c(l0,T) : W)

(%5- g-‘--) e c°(to,T! : H).

Here

JEITON - T T{ TN - T ¥ b
w r
It can be shown that growth estimates of the form

2i 2
 F A | < (]

13 2,0 C exp 20t
2

again hold, where ¢ is the smallest positive real number such that

i=N
a((g',oee 88,00, (8", 000,8%,0)) + 0% ] l&ili .
i-’ *¥

> &1 (z‘,---,z“),n)lz. ' ,
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